
Adaptive Broad-Phase Collision Detection
Henry Owen

COS 497, University of Maine
4/19/18

Advisors: James Fastook, Phillip Dickens

Abstract
Choosing an appropriate broad-phase

collision detection algorithm often depends on
the environment in which the collisions are
taking place. We conducted an in-depth
experiment to understand whether object-speed
and object-size variance have a role in deciding
which algorithm is appropriate.

This experiment did not support that
object-size variance is a significant factor in this
decision. However, the experiment did suggest
that object-speed is a factor given a fixed
environment size. Sweep and Prune, Spatial
Masking, and Oct-Tree performance was not
affected by object size-variance, but was affected
by object speed. The effect of speed on the
algorithm's performance could be reversed by
changing the environment size or the object-size.
Finally, the average velocity of objects in a scene
can be used to switch to the optimal broad-phase
collision detection algorithm in real-time given a
fixed environment size, object quantity and
average object-size.

Introduction
It is important to many video games to

run as fast as possible to give the user a high
frame-rate. At lower frame rates the user begins
to notice the lack of visual feedback. If a user is
playing a game with fast moving objects, a
higher frame rate will provide more detail as to
what the objects are doing. For instance, in a
Billiards game when a player strikes a ball, it
might go off in a direction with considerable
speed. With each new frame, the ball would
appear in a new position along it's trajectory. A
high frame rate is able to show smooth changes
in the ball's position, while a slow frame rate
would cause visual jumps from position to
position. Of course, every frame, the game is
checking whether the ball is striking another ball,

a wall, or a pocket. A ball might collide with any
number of entities present on the pool table.

This process of checking for collisions
can be a major factor in the game's frame-rate,
and reducing collision checks can improve
performance. If there are n objects in a scene, the
collision detection process must process n²
possible collisions. A ball on the pool table must
react to contact with each wall, each pocket, and
possible a pool cue. In turn, if a cue-struck ball
hits a stationary ball, that ball might roll off in a
different direction and make collisions of it's
own. Making this many checks can be taxing and
unnecessary. Performance can be enhanced by
reducing the number of collision checks.

Efficient collision detection is thus split
into two phases. First reducing the number of
collision checks, then measuring exact distances
between the remaining pairs. During the first
phase, if a ball is on one side of the pool table,
and another ball is stationary on the other side, it
is unlikely that they are colliding during that
frame and so the collision detection process skips
this pair. This is called the broad-phase because it
makes broad calculations such as which side of
the pool table the balls are on. The phase that
measures the exact distance between two objects
is called the narrow-phase.

Many broad-phase algorithms exist for
collision detection with diverse methods for
reducing collision pairs. Common ones include
Spatial Masking, Oct-Trees, and Sweep and
Prune algorithms.

Spatial masking uses a uniform grid to
determine “which side of the table” the objects
are on. If two objects inhabit the same cell in that
grid, they are determined likely to collide. It does
this by generating a bitmask whose bits represent
a single cell. Each axis gets a bit mask as a cell's
location in a 3D grid is indexed by three values.
Now that the objects have bitmasks, whether or

not the objects inhabit the same cell can be
determined quickly with bitwise operations. This
is O(n2) in all cases.

Oct-trees use a non-uniform grid to
partition the scene[5]. Again if two object inhabit
the same cell, they are deemed likely to collide.
Oct-Trees recursively partition the space into
octants until either the cell only has one object or
the cell reaches a minimum size. An Oct-Tree
node is a bounding volume, and it is either a leaf
node or has eight child Oct-Trees. If an object is
entirely bounded by one of the Oct-Tree's
children, then it is sent down the tree. If the
object overlaps between two octants, the object
stays in the parent node. The Oct-Tree creates
collision pairs by first coupling its own objects,
then sends those objects down to its children. If
only leaf nodes contain objects, then finding
collision pairs is O(nlogn).

Sweep and Prune algorithms keep a
record of the order in which objects appear on
each axis[4]. On the x-axis, an object appears
first if it has the minimum x end point. Objects
are sorted according to their end-points using
insertion sort. These end-points determine which
objects are entered into a table of collision pairs
which is updated each frame. Sorting end-points
can be O(n) if objects do not move drastically
between frames, but must also traverse a 2D
array to retrieve collision pairs, which runs in
O(n2).

The problem with these diverse broad-
phase methods is that the nature of the scene can
affect their performance in different ways. Oct-
Trees store objects in a tree data structure
according to their location. If the objects move
too much, they have to be reinserted into the tree,
a O(nlogn) procedure. The Sweep and Prune
algorithm uses insertion sort to take advantage of
nearly-sorted lists of end points, but insertion
sort can be O(n²) if too many drastic changes
happen between sortings. Finally, the Spatial
Masking algorithm creates bitmasks for each
object every frame [3], which can be unnecessary
overhead when there are few possible collisions
in the scene.

 Spatial Masking algorithms use a
uniform grid which is optimal when the cells in
the grid are about the same size as the objects in

the scene. Grids with cells that are too small
means that j bits have to be set in each object's
bitmask where j is the number of cells that an
object is in. Cell sizes that are too big could
cause the extreme case in which all objects
inhabit the same cell, causing O(n2) complexity.
Thus cell sizes are determined by the average
size of the objects in the scene. Too much
variation in object size and it could cause
degradation in performance.

It is well known that broad-phase
algorithms have strengths and weaknesses. For
instance, Nvidia's documentation of PhysX's
broad-phase algorithms states that their Sweep
and Prune algorithm's performance degrades
when objects are moving, or when many objects
are being inserted and reinserted[7]. However, a
single algorithm is usually selected to best suite
the application.

It is not well-known whether the
conditions in a scene can be used to determine
which of these algorithms to use in real-time. We
conducted an experiment which tested whether
average object-velocity and object size-variance
could be used to determine which algorithm to
use in real time.

We hypothesized that object size-variance
and object-velocity could be used to determine
the optimal broad-phase algorithm, and that
calculating this information and switching
between algorithms would yield faster broad-
phase performance.

The results suggest that object size-
variance is not a significant factor in broad-phase
algorithm performance, but speed was a factor
given fixed environment size, object-size, and
object quantity. This information was used to
determine the speed at which each algorithm
performed best given these fixed conditions.
Calculating the average velocity in real time and
switching between algorithms resulted in faster
broad-phase performance.

Related Work
Wolfe and Manzke created a framework

for benchmarking broad-phase collision
detection algorithms and tested some algorithms
[1]. They implemented a testing environment
using OpenGL, enumerated testing conditions,

and tested Sweep and Prune and AABB Tree
algorithms [1]. There were a number of
conditions tested for including the geometric
aspect ratio, spatial distribution and quantity of
objects. This series of experiments found that the
Bullet Physics DBVT broad-phase algorithm
performed best best regardless of object quantity
or object aspect ratio. This suggested that these
parameters did not significantly affect the
performance of the algorithms [1]. This series of
experiments is similar to those in this paper. This
experiment seeks to test the algorithms in a
number of different conditions. However, their
goal was not to attempt to combine algorithms
based on this information. The information that
they collected from their experiment was used to
demonstrate the value of a well designed
benchmarking environment. Their experiment
suggested that the Bullet Physics Sweep and
Prune algorithm is not as efficient as the DBVT
algorithm, a result that contradicted conventional
wisdom [1]. They also did not test a Spatial
Mapping or an Oct-Tree algorithm.

Rene Weller et al. created a suite for
benchmarking algorithms in a similar way to
Wolfe and Manzke but concentrated on both
broad and narrow phase collision detection[2].
They were interested in comparing the
performance of both broad and narrow-phase
based on various object geometries, a factor that
becomes important during narrow-phase. In the
experiment presented below, the algorithms use
the same narrow phase collision detection
algorithm which serves to better compare the
broad-phase algorithms alone.

Materials and Methods

We used Unity to implement a virtual
scene for testing the algorithms. Unity has
support for creating simple objects like spheres
and planes, and provides a 3D vector API, which
we used for implementing particle physics.

Although Unity has a native physics
engine, we opted to use our own particle physics
engine for simpler integration with custom
collision detection algorithms. This particle
physics engine allows collisions between spheres
and planes. For our experiment we only need

spheres bounded by a cube.
Particle physics serves as a

comprehensive subject for broad-phase algorithm
testing as the broad-phase is identical to any
other scheme that uses spherical object
approximations, also known as spherical
bounding volumes, a common scheme in
collision detection applications[6].

For our experiments we distributed the
spheres randomly inside the bounding cube. This
is because it is possible for the Oct-Tree to
perform badly when uniformly aligned objects
align with octant boundaries.

We also ensured that random object
clustering was eliminated. Objects were given
velocity in random directions, there was no fluid
drag on the objects, and the collisions in the tests
were perfectly elastic to keep the objects
bouncing off each other indefinitely. This creates
a scene in which objects diffuse evenly in the
scene. This elimination of object clustering
isolates object velocity and object-size variance
as factors to a greater degree.

The average random velocity was
calculated using a simple rolling average. At
each time step of the simulation, every time an
object's velocity was updated, the object's old
velocity was factored out of the average and the
new velocity was factored in. Given that there is
no loss of energy in the simulation thanks to
there being no fluid drag and perfectly elastic
collisions, the average velocity is constant
throughout the test, but the calculation was
needed in order to determine whether the extra
calculations needed to calculate the average
nullified the benefits of using them to determine
the optimal algorithm.

The first experiment was a baseline
benchmark which tested the algorithms against
several object quantities. The objects were placed
in inside a 1024³ m3 bounding cube, given a
radius of 0.5 m and a velocity of 0.173 m/s. The
object quantities ranged from one to three
thousand.

To measured the effect of object-velocity
on algorithm performance, we ran a test in which

the bounding volume was 643 m3, with 339
objects with 0.5 m radii. Then the experiment
measured speeds from 0 to 415.9 m/s, while
calculating the execution times of the algorithms.

We ran an experiment which measured
the effect of environment-size on algorithm
performance. The quantity, size, and speed of the
objects were fixed at 1000, 0.5 m, and 43.3 m/s
respectively. The environment sizes measured
were from 323 m3 to 20483 m3.

To test size variance, we designed a test
to determine whether object size-variance alone
is a factor in performance. The algorithms are
tested against three different size distributions,
normal, inverse-normal, and uniform, as well as
control runs with no size-variance. See the
appendix for diagrams of the distributions used
in this test.

To eliminate the effect of speed and
environment size seen in the previous tests, and
to isolate the size-variance factor, environment-
size and object-speed were adjusted in proportion
to the average object-size. Environment size was
adjusted so that the objects took up 0.01% of the
bounded volume, and the speed was adjusted so
that a particles would take 25.6 seconds to
traverse the length of the bounding area. The
object quantity was fixed at 500. In each
distribution the minimum radius size was 0.001
m and the maximum was 80 m.

Since every distribution had different
environment size, average object-size and object-
velocity, we ran control tests for each
distribution. The control tests use the same
average radius size (but with no size-variation) as
their respective distribution in order to duplicate
the environment size and speed of the last test.

The final test incorporated extreme
conditions in which each algorithm would be
able to perform the best at different speeds. The
bounding area was 327683 m3, and contained
2000 objects with 10 m radii. Speeds ranged
from 0.1 to 119110.8 m/s.

Results

Fig 1: Baseline test measures execution time against
object quantity. Y-axis is execution time in
microseconds, the X-axis is the number of
objects in the scene.

 In Fig. 1, the algorithm marked “Brute
Force” is a control O(n²) algorithm. The brute
force algorithm took 600,000 microseconds to
execute at one-thousand objects, while the others
had an upper bound of 350,000 microseconds at
three-thousand objects. The Oct-Tree performed
the best as quantities became larger. This was
because with three-thousand objects the result
was a sparsely populated scene with small
objects compared to environment size. This
particular set of conditions allowed the Oct-Tree
to perform well.
 As described in the above section, the
objects were moving at 0.173 m/s with a radius
of 0.5 m. This is relatively slow speed and small
radius for the size of the bounding volume. This
creates a scene in which the objects are sparse.
Since an Oct-Tree recursively partitions the
scene until only one object inhabits a partition or
it reaches a minimum partition size, the Oct-Tree
create large partitions containing a single object.
Since the partitions are large, the object can
move further without having to be reinserted into
the tree. Since the objects are evenly distributed
in the scene, the tree is likely to have one object
per partition. This creates a near-optimal case for
the Oct-Tree in which upkeep of the tree is
inexpensive, and collecting collision pairs is
O(nlogn).
 The Sweep and Prune algorithm's
execution time grows faster than the Oct-Tree
due to its traversal of a 2D array to retrieve
collision pairs. However, it still outperforms the
Spatial Masking Algorithm.

 The Spatial Masking execution time grows
significantly faster than the other two algorithms.
This is a result of the extra overhead involved
with creating bitmasks. This is O(n2), but is
significantly faster than the brute-force method at
these object-quantities.

Fig 2: The effect of object speed on algorithm
performance. The Y-axis is execution time in
microseconds, the X-axis is the speed in m/s.

 The next experiment tests the effect of
increasing object speeds. As can be seen from
Fig. 2, the Oct-Tree is affected the most by
speed, with Sweep and Prune being more
resilient and Spatial Masking the most resilient.
 The Oct-Tree approaches worst case when
object speeds are high. Although the Sweep and
Prune algorithm is affected by object speed it
handles it better than the Oct-Tree algorithm. The
Spatial Masking Algorithm is not significantly
affected by object speed.
 The Oct-Tree algorithm is significantly
affected by object speed because a moving object
is removed from and placed back into the tree
structure when the object's location changes
significantly.
 The effect of fast moving objects on
Sweep and Prune ability to sort end-points is
visible. Under these conditions, Sweep and Prune
is still practical.
 The Spatial Masking algorithm is not
affected by object speed because bitmasks are
remade every frame regardless of whether or not
an object's location has changed. This process is
O(n2) no matter what.

Fig 3: Measured the effect of increasing the bounding
volume while keeping speed, object size and quantity
constant. The Y-Axis is the average execution time in
Microseconds, the X-Axis is the cube root of the
volume of the bounding cube in m3.

 Figure 7 shows that increasing the size has
the opposite effect of increasing speed. As the
environment gets larger, the better the Oct-Tree
and Sweep and Prune algorithms perform, while
Spatial Masking again remains unaffected. This
refutes that hypothesis that object velocity alone
would be able to predict which algorithm to use.

Fig 4: Measures the effect of object size-variance on
the algorithms with three different size distributions.
The Y-axis is execution time in microseconds.

Figure 4 shows that there is little
difference in performance between normal,
inverse-normal, and uniform distributions of
object-size for each algorithm. Despite some
differences in performance across distributions,
size-variation does not appear to be a critical
factor for algorithm performance. This refutes
the hypothesis that object size-variance would be
able to help determine the optimal algorithm. In
this range of variation, the Spatial Masking

algorithm did not appear to suffer from variation
as was expected.

Fig 5: Measured the affect of speed on algorithm
performance. The Y-axis is execution time in
microseconds, the X-axis is object-speed in m/s.

The experiment in figure 5 was designed
to include conditions in which each algorithm
would be able to outperform the others. At ~3100
m/s, the Sweep and Prune began outperforming
the Oct-tree. At ~74000 m/s the Spatial Masking
algorithm began outperforming the Sweep and
Prune. The Adaptive algorithm uses these values
to switch to the optimal algorithm at these speed
thresholds. The use of an adaptive algorithm
based on object-velocity supports the hypothesis,
but only given a fixed object quantity,
environment size, object size.

The scene is very large compared to the
size of the objects, this allows the Oct-Tree to
perform well, but means that the experiment had
to increase to very high speeds before the other
algorithms outperformed the Oct-Tree.
Combined with Fig. 2, where the environment
was smaller and speeds slower, this suggests that
the relationship between environment size, object
size, and object speed has a much more powerful
bearing on algorithm performance than object-
velocity alone.

Although switching to the Oct-Tree and
Sweep and Prune algorithms requires extra
overhead during initialization, the cost is not
prohibitive. Oct-Trees have to build the tree from
scratch on the first frame, and Sweep and Prune
algorithms have to sort a totally unsorted list of
end-points. For the Oct-Tree, building a tree is

not unlike reinserting all the objects. However,
when reinserting, the object travels up the tree
until it reaches the first appropriate octant, then it
travels down to find the minimum bounding
octant. When building, an object only has to
travel down the tree. Thus the average case for
updating an existing tree is log8n operations,
while the average case for inserting an object
into a new tree is log8n * (½) operations. For
Sweep and Prune, the first frame uses C#'s
List<T>.Sort method.

Conclusion

The tests support the hypothesis that
object speed can be used to get better
performance out of the algorithms. However, this
in only when the speed reaches a certain
threshold given a fixed volume and object
quantity. For this reason, it appears other factors
such as environment size and average object size
would have to be considered to determine which
algorithm is optimal.

The tests do not support that object size
variance can be used to get better performance
out of the algorithms. Object size-variance does
not appear to be a critical factor in algorithm
performance and therefore other factors should
be considered first.

Future Work

To reform the hypothesis, future testing
would involve testing whether the percentage of
space taken up by objects can determine the
speed at which the algorithms have equal
performance.

For addressing the limitations of the
algorithms when scaled to large environments,
we would like to implement Multi-Sweep and
Prune and Multi-Spatial Masking. These are
schemes for splitting up an environment into
multiple areas each using their own localized
Sweep and Prune or Spatial Masking scheme.
This addresses issues such as when an
environment is too wide for a 64-bit integer to
encode and objects location specifically enough.

Works Cited

[1] Wolfe, Muiris, and Michael Manzke. “A
Framework for Benchmarking Interactive
Collision Detection.” ACM Digital Library,
ACM, 25 Apr. 2009, dl-acm-
org.prxy4.ursus.maine.edu/citation.cfm?
id=1980501.

[2] Weller, Rene, et al. “A Benchmarking Suite for
Static Collision Detection Algorithms.”

[3] Bruce, J. “Real-Time Motion Planning and Safe
Navigation in Dynamic Multi-Robot
Environments Ch. 3: Collision Detection.”
Http://www.cs.cmu.edu/, Carnegie Mellon
University, 15 Dec. 2006,
www.cs.cmu.edu/~jbruce/thesis/chapters/thesis-
ch03.pdf.

[4] Terdiman , Pierre – September 11, 20. “Sweep-
and-Prune.” Sweep-andPrune,
www.codercorner.com/SAP.pdf.

[5] Nevala, Eric. “Introduction to Octrees.”
GameDev.net, 19 July 2017,
www.gamedev.net/articles/programming/
general-and-gameplay-
programming/introduction-to-octrees-r3529/.

[6] Larsson, Thomas, and Linus Källberg. “Fast
Computation of Tight-Fitting Oriented Bounding
Boxes.” Game Engine Gems 2, 2011, pp. 3–19.,
doi:10.1201/b11333-3

[7] “Rigid Body Collision.” NVIDIA Developer
Documentation,
docs.nvidia.com/gameworks/content/gameworksl
ibrary/physx/guide/Manual/RigidBodyCollision.
html.

