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Abstract
Choosing an appropriate broad-phase 

collision detection algorithm often depends on 
the environment in which the collisions are 
taking place. We conducted an in-depth 
experiment to understand whether object-speed 
and object-size variance have a role in deciding 
which algorithm is appropriate. 

This experiment did not support that 
object-size variance is a significant factor in this 
decision. However, the experiment did suggest 
that object-speed is a factor given a fixed 
environment size. Sweep and Prune, Spatial 
Masking, and Oct-Tree performance was not 
affected by object size-variance, but was affected
by object speed. The effect of speed on the 
algorithm's performance could be reversed by 
changing the environment size or the object-size.
Finally, the average velocity of objects in a scene
can be used to switch to the optimal broad-phase 
collision detection algorithm in real-time given a 
fixed environment size, object quantity and 
average object-size.

Introduction
It is important to many video games to 

run as fast as possible to give the user a high 
frame-rate. At lower frame rates the user begins 
to notice the lack of visual feedback. If a user is 
playing a game with fast moving objects, a 
higher frame rate will provide more detail as to 
what the objects are doing. For instance, in a 
Billiards game when a player strikes a ball, it 
might go off in a direction with considerable 
speed. With each new frame, the ball would 
appear in a new position along it's trajectory. A 
high frame rate is able to show smooth changes 
in the ball's position, while a slow frame rate 
would cause visual jumps from position to 
position. Of course, every frame, the game is 
checking whether the ball is striking another ball,

a wall, or a pocket. A ball might collide with any 
number of entities present on the pool table. 

This process of checking for collisions 
can be a major factor in the game's frame-rate, 
and reducing collision checks can improve 
performance. If there are n objects in a scene, the
collision detection process must process n² 
possible collisions. A ball on the pool table must 
react to contact with each wall, each pocket, and 
possible a pool cue. In turn, if a cue-struck ball 
hits a stationary ball, that ball might roll off in a 
different direction and make collisions of it's 
own. Making this many checks can be taxing and
unnecessary. Performance can be enhanced by 
reducing the number of collision checks.

Efficient collision detection is thus split 
into two phases. First reducing the number of 
collision checks, then measuring exact distances 
between the remaining pairs. During the first 
phase, if a ball is on one side of the pool table, 
and another ball is stationary on the other side, it 
is unlikely that they are colliding during that 
frame and so the collision detection process skips
this pair. This is called the broad-phase because it
makes broad calculations such as which side of 
the pool table the balls are on. The phase that 
measures the exact distance between two objects 
is called the narrow-phase.

Many broad-phase algorithms exist for 
collision detection with diverse methods for 
reducing collision pairs. Common ones include 
Spatial Masking, Oct-Trees, and Sweep and 
Prune algorithms. 

Spatial masking uses a uniform grid to 
determine “which side of the table” the objects 
are on. If two objects inhabit the same cell in that
grid, they are determined likely to collide. It does
this by generating a bitmask whose bits represent
a single cell. Each axis gets a bit mask as a cell's 
location in a 3D grid is indexed by three values. 
Now that the objects have bitmasks, whether or 



not the objects inhabit the same cell can be 
determined quickly with bitwise operations. This 
is O(n2) in all cases.

Oct-trees use a non-uniform grid to 
partition the scene[5]. Again if two object inhabit
the same cell, they are deemed likely to collide. 
Oct-Trees recursively partition the space into 
octants until either the cell only has one object or
the cell reaches a minimum size. An Oct-Tree 
node is a bounding volume, and it is either a leaf 
node or has eight child Oct-Trees. If an object is 
entirely bounded by one of the Oct-Tree's 
children, then it is sent down the tree. If the 
object overlaps between two octants, the object 
stays in the parent node. The Oct-Tree creates 
collision pairs by first coupling its own objects, 
then sends those objects down to its children. If 
only leaf nodes contain objects, then finding 
collision pairs is O(nlogn).

Sweep and Prune algorithms keep a 
record of the order in which objects appear on 
each axis[4]. On the x-axis, an object appears 
first if it has the minimum x end point. Objects 
are sorted according to their end-points using 
insertion sort. These end-points determine which 
objects are entered into a table of collision pairs 
which is updated each frame. Sorting end-points 
can be O(n) if objects do not move drastically 
between frames, but must also traverse a 2D 
array to retrieve collision pairs, which runs in 
O(n2). 

The problem with these diverse broad-
phase methods is that the nature of the scene can 
affect their performance in different ways. Oct-
Trees store objects in a tree data structure 
according to their location. If the objects move 
too much, they have to be reinserted into the tree,
a O(nlogn) procedure. The Sweep and Prune 
algorithm uses insertion sort to take advantage of
nearly-sorted lists of end points, but insertion 
sort can be O(n²) if too many drastic changes 
happen between sortings. Finally, the Spatial 
Masking algorithm creates bitmasks for each 
object every frame [3], which can be unnecessary
overhead when there are few possible collisions 
in the scene. 

 Spatial Masking algorithms use a 
uniform grid which is optimal when the cells in 
the grid are about the same size as the objects in 

the scene. Grids with cells that are too small 
means that j bits have to be set in each object's 
bitmask where j is the number of cells that an 
object is in. Cell sizes that are too big could 
cause the extreme case in which all objects 
inhabit the same cell, causing O(n2) complexity. 
Thus cell sizes are determined by the average 
size of the objects in the scene. Too much 
variation in object size and it could cause 
degradation in performance.

It is well known that broad-phase 
algorithms have strengths and weaknesses. For 
instance, Nvidia's documentation of PhysX's 
broad-phase algorithms states that their Sweep 
and Prune algorithm's performance degrades 
when objects are moving, or when many objects 
are being inserted and reinserted[7]. However, a 
single algorithm is usually selected to best suite 
the application. 

It is not well-known whether the 
conditions in a scene can be used to determine 
which of these algorithms to use in real-time. We
conducted an experiment which tested whether 
average object-velocity and object size-variance 
could be used to determine which algorithm to 
use in real time. 

We hypothesized that object size-variance
and object-velocity could be used to determine 
the optimal broad-phase algorithm, and that 
calculating this information and switching 
between algorithms would yield faster broad-
phase performance.

The results suggest that object size-
variance is not a significant factor in broad-phase
algorithm performance, but speed was a factor 
given fixed environment size, object-size, and 
object quantity. This information was used to 
determine the speed at which each algorithm 
performed best given these fixed conditions. 
Calculating the average velocity in real time and 
switching between algorithms resulted in faster 
broad-phase performance.

Related Work
Wolfe and Manzke created a framework 

for benchmarking broad-phase collision 
detection algorithms and tested some algorithms 
[1]. They implemented a testing environment 
using OpenGL, enumerated testing conditions, 



and tested Sweep and Prune and AABB Tree 
algorithms [1]. There were a number of 
conditions tested for including the geometric 
aspect ratio, spatial distribution and quantity of 
objects. This series of experiments found that the
Bullet Physics DBVT broad-phase algorithm 
performed best best regardless of object quantity 
or object aspect ratio. This suggested that these 
parameters did not significantly affect the 
performance of the algorithms [1]. This series of 
experiments is similar to those in this paper. This 
experiment seeks to test the algorithms in a 
number of different conditions. However, their 
goal was not to attempt to combine algorithms 
based on this information. The information that 
they collected from their experiment was used to 
demonstrate the value of a well designed 
benchmarking environment. Their experiment 
suggested that the Bullet Physics Sweep and 
Prune algorithm is not as efficient as the DBVT 
algorithm, a result that contradicted conventional
wisdom [1]. They also did not test a Spatial 
Mapping or an Oct-Tree algorithm. 

Rene Weller et al. created a suite for 
benchmarking algorithms in a similar way to 
Wolfe and Manzke but concentrated on both 
broad and narrow phase collision detection[2]. 
They were interested in comparing the 
performance of both broad and narrow-phase 
based on various object geometries, a factor that 
becomes important during narrow-phase. In the 
experiment presented below, the algorithms use 
the same narrow phase collision detection 
algorithm which serves to better compare the 
broad-phase algorithms alone.

Materials and Methods

We used Unity to implement a virtual 
scene for testing the algorithms. Unity has 
support for creating simple objects like spheres 
and planes, and provides a 3D vector API, which 
we used for implementing particle physics. 

Although Unity has a native physics 
engine, we opted to use our own particle physics 
engine for simpler integration with custom 
collision detection algorithms. This particle 
physics engine allows collisions between spheres
and planes. For our experiment we only need 

spheres bounded by a cube.
Particle physics serves as a 

comprehensive subject for broad-phase algorithm
testing as the broad-phase is identical to any 
other scheme that uses spherical object 
approximations, also known as spherical 
bounding volumes, a common scheme in 
collision detection applications[6].

For our experiments we distributed the 
spheres randomly inside the bounding cube. This 
is because it is possible for the Oct-Tree to 
perform badly when uniformly aligned objects 
align with octant boundaries. 

We also ensured that random object 
clustering was eliminated. Objects were given 
velocity in random directions, there was no fluid 
drag on the objects, and the collisions in the tests 
were perfectly elastic to keep the objects 
bouncing off each other indefinitely. This creates 
a scene in which objects diffuse evenly in the 
scene. This elimination of object clustering 
isolates object velocity and object-size variance  
as factors to a greater degree.

The average random velocity was 
calculated using a simple rolling average. At 
each time step of the simulation, every time an 
object's velocity was updated, the object's old 
velocity was factored out of the average and the 
new velocity was factored in. Given that there is 
no loss of energy in the simulation thanks to 
there being no fluid drag and perfectly elastic 
collisions, the average velocity is constant 
throughout the test, but the calculation was 
needed in order to determine whether the extra 
calculations needed to calculate the average 
nullified the benefits of using them to determine 
the optimal algorithm. 

The first experiment was a baseline 
benchmark which tested the algorithms against 
several object quantities. The objects were placed
in inside a 1024³ m3 bounding cube, given a 
radius of 0.5 m and a velocity of 0.173 m/s. The 
object quantities ranged from one to three 
thousand.

To measured the effect of object-velocity 
on algorithm performance, we ran a test in which



the bounding volume was 643 m3, with 339 
objects with 0.5 m radii. Then the experiment 
measured speeds from 0 to 415.9 m/s, while 
calculating the execution times of the algorithms.

We ran an experiment which measured 
the effect of environment-size on algorithm 
performance. The quantity, size, and speed of the
objects were fixed at 1000, 0.5 m, and 43.3 m/s 
respectively. The environment sizes measured 
were from 323 m3 to 20483 m3.

To test size variance, we designed a test 
to determine whether object size-variance alone 
is a factor in performance. The algorithms are 
tested against three different size distributions, 
normal, inverse-normal, and uniform, as well as 
control runs with no size-variance. See the 
appendix for diagrams of the distributions used 
in this test. 

To eliminate the effect of speed and 
environment size seen in the previous tests, and 
to isolate the size-variance factor, environment-
size and object-speed were adjusted in proportion
to the average object-size. Environment size was 
adjusted so that the objects took up 0.01% of the 
bounded volume, and the speed was adjusted so 
that a particles would take 25.6 seconds to 
traverse the length of the bounding area. The 
object quantity was fixed at 500. In each 
distribution the minimum radius size was 0.001 
m and the maximum was 80 m. 

Since every distribution had different 
environment size, average object-size and object-
velocity, we ran control tests for each 
distribution. The control tests use the same 
average radius size (but with no size-variation) as
their respective distribution in order to duplicate 
the environment size and speed of the last test.

The final test incorporated extreme 
conditions in which each algorithm would be 
able to perform the best at different speeds. The 
bounding area was 327683 m3, and contained 
2000 objects with 10 m radii. Speeds ranged 
from 0.1 to 119110.8 m/s. 

Results

Fig 1: Baseline test measures execution time against 
object quantity. Y-axis is execution time in 
microseconds, the X-axis is the number of 
objects in the scene. 

           In Fig. 1, the algorithm marked “Brute 
Force” is a control O(n²) algorithm. The brute 
force algorithm took 600,000 microseconds to 
execute at one-thousand objects, while the others
had an upper bound of 350,000 microseconds at 
three-thousand objects. The Oct-Tree performed 
the best as quantities became larger. This was 
because with three-thousand objects the result 
was a sparsely populated scene with small 
objects compared to environment size. This 
particular set of conditions allowed the Oct-Tree 
to perform well. 
           As described in the above section, the 
objects were moving at 0.173 m/s with a radius 
of 0.5 m. This is relatively slow speed and small 
radius for the size of the bounding volume. This 
creates a scene in which the objects are sparse. 
Since an Oct-Tree recursively partitions the 
scene until only one object inhabits a partition or 
it reaches a minimum partition size, the Oct-Tree 
create large partitions containing a single object. 
Since the partitions are large, the object can 
move further without having to be reinserted into
the tree. Since the objects are evenly distributed 
in the scene, the tree is likely to have one object 
per partition. This creates a near-optimal case for 
the Oct-Tree in which upkeep of the tree is 
inexpensive, and collecting collision pairs is 
O(nlogn).
          The Sweep and Prune algorithm's 
execution time grows faster than the Oct-Tree 
due to its traversal of a 2D array to retrieve 
collision pairs. However, it still outperforms the 
Spatial Masking Algorithm.



          The Spatial Masking execution time grows
significantly faster than the other two algorithms.
This is a result of the extra overhead involved 
with creating bitmasks. This is O(n2), but is 
significantly faster than the brute-force method at
these object-quantities.

Fig 2: The effect of object speed on algorithm 
performance. The Y-axis is execution time in 
microseconds, the X-axis is the speed in m/s.

          The next experiment tests the effect of 
increasing object speeds. As can be seen from 
Fig. 2, the Oct-Tree is affected the most by 
speed, with Sweep and Prune being more 
resilient and Spatial Masking the most resilient. 
          The Oct-Tree approaches worst case when 
object speeds are high. Although the Sweep and 
Prune algorithm is affected by object speed it 
handles it better than the Oct-Tree algorithm. The
Spatial Masking Algorithm is not significantly 
affected by object speed.
          The Oct-Tree algorithm is significantly 
affected by object speed because a moving object
is removed from and placed back into the tree 
structure when the object's location changes 
significantly.
          The effect of fast moving objects on 
Sweep and Prune ability to sort end-points is 
visible. Under these conditions, Sweep and Prune
is still practical. 
          The Spatial Masking algorithm is not 
affected by object speed because bitmasks are 
remade every frame regardless of whether or not 
an object's location has changed. This process is 
O(n2) no matter what. 

Fig 3: Measured the effect of increasing the bounding
volume while keeping speed, object size and quantity 
constant. The Y-Axis is the average execution time in 
Microseconds, the X-Axis is the cube root of the 
volume of the bounding cube in m3.

          Figure 7 shows that increasing the size has 
the opposite effect of increasing speed. As the 
environment gets larger, the better the Oct-Tree 
and Sweep and Prune algorithms perform, while 
Spatial Masking again remains unaffected. This 
refutes that hypothesis that object velocity alone 
would be able to predict which algorithm to use.

Fig 4: Measures the effect of object size-variance on 
the algorithms with three different size distributions. 
The Y-axis is execution time in microseconds.

Figure 4 shows that there is little 
difference in performance between normal, 
inverse-normal, and uniform distributions of 
object-size for each algorithm. Despite some 
differences in performance across distributions, 
size-variation does not appear to be a critical 
factor for algorithm performance. This refutes 
the hypothesis that object size-variance would be
able to help determine the optimal algorithm. In 
this range of variation, the Spatial Masking 



algorithm did not appear to suffer from variation 
as was expected. 

Fig 5: Measured the affect of speed on algorithm 
performance. The Y-axis is execution time in 
microseconds, the X-axis is object-speed in m/s.

The experiment in figure 5 was designed 
to include conditions in which each algorithm 
would be able to outperform the others. At ~3100
m/s, the Sweep and Prune began outperforming 
the Oct-tree. At ~74000 m/s the Spatial Masking 
algorithm began outperforming the Sweep and 
Prune. The Adaptive algorithm uses these values 
to switch to the optimal algorithm at these speed 
thresholds. The use of an adaptive algorithm 
based on object-velocity supports the hypothesis,
but only given a fixed object quantity, 
environment size, object size.

The scene is very large compared to the 
size of the objects, this allows the Oct-Tree to 
perform well, but means that the experiment had 
to increase to very high speeds before the other 
algorithms outperformed the Oct-Tree. 
Combined with Fig. 2, where the environment 
was smaller and speeds slower, this suggests that 
the relationship between environment size, object
size, and object speed has a much more powerful
bearing on algorithm performance than object-
velocity alone. 

Although switching to the Oct-Tree and 
Sweep and Prune algorithms requires extra 
overhead during initialization, the cost is not 
prohibitive. Oct-Trees have to build the tree from
scratch on the first frame, and Sweep and Prune 
algorithms have to sort a totally unsorted list of 
end-points. For the Oct-Tree, building a tree is 

not unlike reinserting all the objects. However, 
when reinserting, the object travels up the tree 
until it reaches the first appropriate octant, then it
travels down to find the minimum bounding 
octant. When building, an object only has to 
travel down the tree. Thus the average case for 
updating an existing tree is log8n operations, 
while the average case for inserting an object 
into a new tree is log8n * (½) operations. For 
Sweep and Prune, the first frame uses C#'s 
List<T>.Sort method.

Conclusion

The tests support the hypothesis that 
object speed can be used to get better 
performance out of the algorithms. However, this
in only when the speed reaches a certain 
threshold given a fixed volume and object 
quantity. For this reason, it appears other factors 
such as environment size and average object size 
would have to be considered to determine which 
algorithm is optimal.

The tests do not support that object size 
variance can be used to get better performance 
out of the algorithms. Object size-variance does 
not appear to be a critical factor in algorithm 
performance and therefore other factors should 
be considered first.

Future Work

To reform the hypothesis, future testing 
would involve testing whether the percentage of 
space taken up by objects can determine the 
speed at which the algorithms have equal 
performance.

For addressing the limitations of the 
algorithms when scaled to large environments, 
we would like to implement Multi-Sweep and 
Prune and Multi-Spatial Masking. These are 
schemes for splitting up an environment into 
multiple areas each using their own localized 
Sweep and Prune or Spatial Masking scheme. 
This addresses issues such as when an 
environment is too wide for a 64-bit integer to 
encode and objects location specifically enough. 
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